Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Mol Sci ; 23(20)2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2071511

ABSTRACT

Caloric restriction promotes longevity in multiple animal models. Compounds modulating nutrient-sensing pathways have been suggested to reproduce part of the beneficial effect of caloric restriction on aging. However, none of the commonly studied caloric restriction mimetics actually produce a decrease in calories. Sodium-glucose cotransporter 2 inhibitors (SGLT2-i) are a class of drugs which lower glucose by promoting its elimination through urine, thus inducing a net loss of calories. This effect promotes a metabolic shift at the systemic level, fostering ketones and fatty acids utilization as glucose-alternative substrates, and is accompanied by a modulation of major nutrient-sensing pathways held to drive aging, e.g., mTOR and the inflammasome, overall resembling major features of caloric restriction. In addition, preliminary experimental data suggest that SGLT-2i might also have intrinsic activities independent of their systemic effects, such as the inhibition of cellular senescence. Consistently, evidence from both preclinical and clinical studies have also suggested a marked ability of SGLT-2i to ameliorate low-grade inflammation in humans, a relevant driver of aging commonly referred to as inflammaging. Considering also the amount of data from clinical trials, observational studies, and meta-analyses suggesting a tangible effect on age-related outcomes, such as cardiovascular diseases, heart failure, kidney disease, and all-cause mortality also in patients without diabetes, here we propose a framework where at least part of the benefit provided by SGLT-2i is mediated by their ability to blunt the drivers of aging. To support this postulate, we synthesize available data relative to the effect of this class on: 1- animal models of healthspan and lifespan; 2- selected molecular pillars of aging in preclinical models; 3- biomarkers of aging and especially inflammaging in humans; and 4- COVID-19-related outcomes. The burden of evidence might prompt the design of studies testing the potential employment of this class as anti-aging drugs.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Animals , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Inflammasomes , Drug Repositioning , Diabetes Mellitus, Type 2/drug therapy , Aging , Glucose/therapeutic use , TOR Serine-Threonine Kinases , Sodium , Ketones/therapeutic use , Fatty Acids/therapeutic use
2.
Nat Commun ; 13(1): 2318, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1815536

ABSTRACT

Patients with type 2 diabetes (T2D) are characterized by blunted immune responses, which are affected by glycaemic control. Whether glycaemic control influences the response to COVID-19 vaccines and the incidence of SARS-CoV-2 breakthrough infections is unknown. Here we show that poor glycaemic control, assessed as mean HbA1c in the post-vaccination period, is associated with lower immune responses and an increased incidence of SARS-CoV-2 breakthrough infections in T2D patients vaccinated with mRNA-BNT162b2. We report data from a prospective observational study enroling healthcare and educator workers with T2D receiving the mRNA-BNT162b2 vaccine in Campania (Italy) and followed for one year (5 visits, follow-up 346 ± 49 days) after one full vaccination cycle. Considering the 494 subjects completing the study, patients with good glycaemic control (HbA1c one-year mean < 7%) show a higher virus-neutralizing antibody capacity and a better CD4 + T/cytokine response, compared with those with poor control (HbA1c one-year mean ≥ 7%). The one-year mean of HbA1c is linearly associated with the incidence of breakthrough infections (Beta = 0.068; 95% confidence interval [CI], 0.032-0.103; p < 0.001). The comparison of patients with poor and good glycaemic control through Cox regression also show an increased risk for patients with poor control (adjusted hazard ratio [HR], 0.261; 95% CI, 0.097-0.700; p = 0.008). Among other factors, only smoking (HR = 0.290, CI 0.146-0.576 for non-smokers; p < 0.001) and sex (HR = 0.105, CI 0.035-0.317 for females; p < 0.001) are significantly associated with the incidence of breakthrough infections.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Female , Glycated Hemoglobin , Glycemic Control , Humans , RNA, Messenger , SARS-CoV-2
3.
J Clin Med ; 11(6)2022 Mar 12.
Article in English | MEDLINE | ID: covidwho-1742504

ABSTRACT

BACKGROUND/AIMS: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-stranded single-stranded RNA virus, a member of the subgenus Sarbecovirus (beta-CoV lineage B) and responsible for the coronavirus disease 2019 (COVID-19). COVID-19 encompasses a large range of disease severity, from mild symptoms to severe forms with Intensive Care Unit admission and eventually death. The severe forms of COVID-19 are usually observed in high-risk patients, such as those with type two diabetes mellitus. Here, we review the available evidence linking acute and chronic hyperglycemia to COVID-19 outcomes, describing also the putative mediators of such interactions. FINDINGS/CONCLUSIONS: Acute hyperglycemia at hospital admission represents a risk factor for poor COVID-19 prognosis in patients with and without diabetes. Acute and chronic glycemic control are both emerging as major determinants of vaccination efficacy, disease severity and mortality rate in COVID-19 patients. Mechanistically, it has been proposed that hyperglycemia might be a disease-modifier for COVID-19 through multiple mechanisms: (a) induction of glycation and oligomerization of ACE2, the main receptor of SARS-CoV-2; (b) increased expression of the serine protease TMPRSS2, responsible for S protein priming; (c) impairment of the function of innate and adaptive immunity despite the induction of higher pro-inflammatory responses, both local and systemic. Consistently, managing acute hyperglycemia through insulin infusion has been suggested to improve clinical outcomes, while implementing chronic glycemic control positively affects immune response following vaccination. Although more research is warranted to better disentangle the relationship between hyperglycemia and COVID-19, it might be worth considering glycemic control as a potential route to optimize disease prevention and management.

5.
Cardiovasc Diabetol ; 20(1): 218, 2021 11 06.
Article in English | MEDLINE | ID: covidwho-1503722

ABSTRACT

Type 2 diabetes is one of the most relevant risk factors for heart failure, the prevalence of which is increasing worldwide. The aim of the review is to highlight the current perspectives of the pathophysiology of heart failure as it pertains to type 2 diabetes. This review summarizes the proposed mechanistic bases, explaining the myocardial damage induced by diabetes-related stressors and other risk factors, i.e., cardiomyopathy in type 2 diabetes. We highlight the complex pathology of individuals with type 2 diabetes, including the relationship with chronic kidney disease, metabolic alterations, and heart failure. We also discuss the current criteria used for heart failure diagnosis and the gold standard screening tools for individuals with type 2 diabetes. Currently approved pharmacological therapies with primary use in type 2 diabetes and heart failure, and the treatment-guiding role of NT-proBNP are also presented. Finally, the influence of the presence of type 2 diabetes as well as heart failure on COVID-19 severity is briefly discussed.


Subject(s)
COVID-19/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Disease Management , Heart Failure/epidemiology , Mass Screening/methods , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Glycated Hemoglobin/metabolism , Heart Failure/blood , Heart Failure/diagnosis , Humans , Mass Screening/trends , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Prognosis
6.
iScience ; 24(8): 102898, 2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1322153

ABSTRACT

The clinical benefit of convalescent plasma (CP) for patients with coronavirus disease (COVID)-19 is still debated. In this systematic review and meta-analysis, we selected 10 randomized clinical trials (RCTs) and 15 non-randomized studies (total number of patients = 22,591) of CP treatment and evaluated two different scenarios: (1) disease stage of plasma recipients and (2) donated plasma antibody titer, considering all-cause mortality at the latest follow-up. Our results show that, when provided at early stages of the disease, CP significantly reduced mortality: risk ratio (RR) 0.72 (0.68, 0.77), p < 0.00001, while provided in severe or critical conditions, it did not (RR: 0.94 [0.86, 1.04], p = 0.22). On the other hand, the benefit on mortality was not increased by using plasma with a high-antibody titer compared with unselected plasma. This meta-analysis might promote CP usage in patients with early-stage COVID-19 in further RCTs to maximize its benefit in decreasing mortality, especially in less affluent countries.

7.
Diabetes Metab Res Rev ; 38(1): e3476, 2022 01.
Article in English | MEDLINE | ID: covidwho-1245386

ABSTRACT

AIMS: Diabetes is emerging as a risk factor for coronavirus disease (COVID)-19 prognosis. However, contradictory findings have been reported regarding the impact of glycaemic control on COVID-19 outcome. The aim of this meta-analysis was to explore the impact of hospital pre-admission or at-admission values of HbA1c on COVID-19 mortality or worsening in patients with diabetes. MATERIALS AND METHODS: We searched PubMed, Embase and Scopus up to 30th December 2020. Eligibility criteria for study selection were the following: (1)enrolling patients with any form of diabetes mellitus and hospitalized for COVID-19 and (2) reporting data regarding HbA1c values before infection or at hospital admission in relation to COVID-19 mortality or worsening. Descriptive statistics, HbA1c values, odds ratios (ORs) and hazard ratios were extracted from seven observational studies and generic inverse variance (random effects) of OR was used to estimate the effect of HbA1c on COVID-19 outcome. RESULTS: HbA1c was linearly associated with an increased COVID-19 mortality or worsening when considered as a continuous variable (OR 1.01 [1.01, 1.01]; p < 0.00001). Similarly, when analysing studies providing the number of events according to the degree of glycaemic control among various strata, a significantly increased risk was observed with poor glycaemic control (OR 1.15 [1.11, 1.19]; p < 0.00001), a result corroborated by sensitivity analysis. CONCLUSIONS: Notwithstanding the large heterogeneity in study design and patients' characteristics in the few available studies, data suggest that patients with diabetes and poor glycaemic control before infection might have an increased risk of COVID-19 related mortality.


Subject(s)
COVID-19 , Glycated Hemoglobin , COVID-19/mortality , Diabetes Mellitus , Glycated Hemoglobin/analysis , Humans , Hyperglycemia , Risk Assessment
8.
J Diabetes Complications ; 35(7): 107927, 2021 07.
Article in English | MEDLINE | ID: covidwho-1188733

ABSTRACT

Evidence suggests that diabetes is one the most relevant comorbidity in affecting the prognosis of COVID-19. Albeit there are no specific trials nor subgroup analysis showing the effect of COVID-19 therapies in patients with diabetes, selected features of this disease and the side effects associated with certain drugs require a proper knowledge to optimize the pharmacological therapy of patients with diabetes and COVID-19. While chronic anti-hypertensive and glucose-lowering therapies should not be discontinued nor preferred for preventive purposes, the low-grade pro-inflammatory, the thrombosis-prone status of diabetes, the role of acute hyperglycaemia in promoting adverse outcomes in patients admitted to ICU, and the observed increased mortality in patients with poor long-term glycaemic control delineate a delicate balance in case of severe forms of COVID-19. Here, we briefly summarized some of the key pharmacological issues linked to the management of patients with diabetes and COVID-19, in order to provide indications to minimize the deleterious effects of the concomitant presentation of these diseases and to use the existing pharmacological options in an appropriate manner.


Subject(s)
COVID-19 Drug Treatment , COVID-19/complications , Diabetes Mellitus, Type 2/complications , Humans
10.
Trends Immunol ; 42(1): 18-30, 2021 01.
Article in English | MEDLINE | ID: covidwho-1065237

ABSTRACT

Severe infection with severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is characterized by massive cytokine release and T cell loss. The exaggerated host immune response, incapable of viral clearance, instead aggravates respiratory distress, as well as cardiac, and/or damage to other organs. The mortality pattern of SARS-CoV-2 infection, higher in older versus younger adults and almost absent in children, is possibly caused by the effects of age and pre-existing comorbidities on innate and adaptive immunity. Here, we speculate that the abnormal and excessive immune response to SARS-CoV-2 infection partly depends on T cell immunological memory, which is more pronounced in adults compared with children, and may significantly contribute to immunopathology and massive collateral damage in coronavirus disease 2019 (COVID-19) patients.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Immunity, Innate/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , COVID-19/prevention & control , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Humans , Immunologic Memory/immunology , Models, Immunological , SARS-CoV-2/physiology , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
13.
Cytokine Growth Factor Rev ; 53: 33-37, 2020 06.
Article in English | MEDLINE | ID: covidwho-154941

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is characterized by a high mortality of elderly men with age-related comorbidities. In most of these patients, uncontrolled local and systemic hyperinflammation induces severe and often lethal outcomes. The aging process is characterized by the gradual development of a chronic subclinical systemic inflammation (inflamm-aging) and by acquired immune system impairment (immune senescence). Here, we advance the hypothesis that four well-recognized features of aging contribute to the disproportionate SARS-CoV-2 mortality suffered by elderly men: i. the presence of subclinical systemic inflammation without overt disease, ii. a blunted acquired immune system and type I interferon response due to the chronic inflammation; iii. the downregulation of ACE2 (i.e. the SARS-CoV-2 receptor); and iv. accelerated biological aging. The high mortality rate of SARS-CoV-2 infection suggests that clarification of the mechanisms of inflamm-aging and immune senescence can help combat not only age-related disorders but also SARS-CoV-2 infection.


Subject(s)
Aging/pathology , Coronavirus Infections/mortality , Coronavirus Infections/pathology , Interleukin-6/immunology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/mortality , Pneumonia, Viral/pathology , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus/immunology , COVID-19 , Comorbidity , Coronavirus Infections/drug therapy , Female , Humans , Inflammation/pathology , Interferon Type I/blood , Interferon Type I/immunology , Interleukin-6/antagonists & inhibitors , Male , Pandemics , Peptidyl-Dipeptidase A/biosynthesis , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/mortality , Severe Acute Respiratory Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL